Neural Networks and Continuous Time

Frieder Stolzenburg, Florian Ruh Hochschule Harz (FH), University of Applied Sciences, Department of Automation and Computer Sciences, D-38855 Wernigerode, Germany, {fstolzenburg,fruh}@hs-harz.de

Goal

simulate structure and functional aspects of biological networks, i.e. find computational model for technical, physical, and cognitive processes, which evolve continuously in time

Scenario 1: deductive reasoning

Scenario 2: behavior generation

Scenario 3: periodicity analysis

Continuous Neural Networks

Neural Network Unit

- 1. summation with *time delay* : $y_1(t) = \sum_{i=1}^n w_i \cdot x_i(t - \delta_i)$
- 2. integration (average signal power):

$$y_2(t) = \sqrt{\frac{1}{\tau} \int\limits_{t-\tau}^t y_1(u)^2 du}$$

- 3. nonlinear activation: $y_3(t) = \frac{\tanh(\alpha \, y_2(t))}{\alpha}$
- 4. oscillation (amplitude modulation): $y_4(t) = y_3(t) \cdot \cos(\omega t)$

Summary

CNNs can express deductive reasoning, robot behavior, and analysis of environment

