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INTRODUCTION

Modelling human behavior in terms of its physical, logical and cognitive correlates is innately
complicated. One approach to simplifying this problem is to describe human intentions in the
form of a subsumptive perception-action hierarchy [2, 1]. Perception-action methodologies
assume that perceptual representation depends critically upon an agent’s action capability.
We thus adopt the principle that an agent’s set of possible perceptual transitions exists in
one-to-one correlation with intentional actions at each level of the perception-action hierarchy
in order to model human cognition. In particular, we seek to infer the (hierarchical) mapping
existing between domain-based action protocols and human visual representations within
the scenario of car driving. To this end, we adopt the Extended Control Model (ECOM)
which describes human driving behavior in terms of four distinct (but simultaneous) layers
of perception-action feedback [3] (Targeting, Monitoring, Regulating, Tracking), that collec-
tively represent every aspect of driving (from navigating to car-following) as a perception-
action feedback cycle. Within this model, human visual representations are determined via
the correlation of attention (measured by gaze-tracking) with a highway-code-derived scene
description hierarchy involving traffic lights, lanes, roads, sign junction etc. Our goal is thus
to use stochastic and structural machine learning techniques to correctly determine the active
intention at each level of the ECOM hierarchy when given a set of gaze, signal, control and
scene-description classifier inputs. Our ultimate aim is to do this in an adaptive, unsupervised
manner.

Figure 1: Granlund’s Perception Action Model [2].

EXTENDED CONTROL MODEL (ECOM)

The Extended Control Model (ECOM) consists in the following four layers of control [3].

1. Tracking layer corresponds to agent’s response to external disturbances, e.g. keeping a car in a specific lane
or at a specific distance from the car in front.

2. Regulating directs tracking control layer by providing it with new goals or tasks e.g. avoiding obstacles,
positioning of a car relative to other road entities.

3. Monitoring layer behavior in the car driving scenario tends to keep a track of all the traffic signs and signals

as well as road vehicle orientation and positions.

Figure 2: ECOM Model layers [3].

INPUT MODALITIES FOR DATA CAPTURE

Our problem is to identify ECOM states (i.e. hierarchical driver intentions) using the fol-
lowing modalities attached to an experimental car:

1. DGPS (20Hz)

2. External cameras to capture traffic scene

3. Internal cameras for drivers eye-tracking

4. LIDAR (Light Detection & Ranging 20Hz sweep, 220 degrees in front of vehicle)

GROUND TRUTH ANNOTATION

The annotation step involves the collection of suitable ground-truthed data detailing im-
portant control inputs and the driver’s gaze behavior with respect to the external scene.
These inputs are used to compile a comprehensive list of low-level features relating to the
expertly-annotated ECOM Regulating and Monitoring level intentions and the correspond-
ing highway-code-derived world-model. Each ECOM level consists of mutually exclusive
classes that cannot be active in parallel. Gaze behavior is characterized, on a per-frame ba-
sis, using key-entity(e.g. sign, traffic-light) bounding-box transitions within both the ground-
plane and view-planes. The propagation of junction topologies and zones throughout the
video footage requires the aggregation of LIDAR data for approximate delineation of junc-
tion outlines, Hough-line transform and Canny edge detect to select predominating vectors.
This is later fitted with a junction topology/lane structure and projected onto the screen
frame. The resulting feature vector consists of 666 hierarchical binary predicates .

Figure 3: Aggregation of LIDAR data (left), edge-detected and Hough Transformed
histogram (right).

CONTEXT-FREE MACHINE LEARNING

The current experiment comprises six cross-road traversing scenarios, consisting of 2 cases
each of left-turning, right-turning and straight-over junction traverses. Using a maximally
populated hierarchical domain of relational feature descriptors, ECOM-like behaviors can be
learned using standard statistical pattern-recognition techniques. We here use decision tree
learners so as to generate a discriminative but clause-based description of learning rules for
later logic integration. ECOM annotations are thus split into 5-levels of hierarchical intentions
per-frame constituting the class labels to be learnt. A leave-one-out cross-validation technique
is used for evaluating the acontextual classifiers.

Figure 4: Percentage misclassification rates for each scenario, where level (1 to 5)
represent hierarchical ECOM levels of driver intentions.

Figure 5: Decision tree output projected onto the screen frame along with eye-gaze
(blue dot) and junction topology/lane structure.

DEDUCTIVE LOGIC SYSTEM

The logical deduction system is used as an extension to the previous acontextual intentional
detection system for accommodating rule-like behaviors relating to intentional configuration
changes not fully captured by stochastic correlation. In the most typical mode of opera-
tion, the logic system attempts to construct a consistent world-model from the decision-tree,
computer-vision, gaze, signal and control inputs in order to determine the active ECOM in-
tention and sub-intention at any given time. However, in the absence of decision-tree input,
the logic system can also act as a per-frame ECOM intentional-classifier with performance
as indicated in fig 6.
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Figure 6: 2nd example of right-turn scenario (left), 2nd example of straight-over sce-
nario (right).

It may be noticed that the accuracy figures increase with time for the right scenario, since
the default ’straight on’ assumption becomes falsified as more temporal context is accrued.
However, by combining the decision-tree outputs with logical deduction through their incorpo-
ration into the consistency testing and aggregation procedure, the accuracy of the composite
system is very significantly greater than that of the individual systems:
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Figure 7: Comparison of a priori logic & decision-trees accuracy for 1st right-turn
scenario (left), combination of decision-trees with logical consistency constraints (right).

CONCLUSION

We sought to determine the mapping existing between the task-subsumption hierarchy and
scene-representation hierarchy employed by humans in navigating junctions. This was ac-
complished via the application of decision-trees & a priori logical deduction to an expert-
annotated hierarchy of intentional descriptors applied to driving footage with an eye-tracking
overlay, as well as control and signal inputs from the car. Future work involves using logical
consistency as a top-down feedback mechanism to re-weight individual detector confidences
in an adaptive bootstrap cycle.
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