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1. Introduction

The hippocampal formation (HF; entorhinal cortex (EC),
CA3,CA1,DG and the subiculum) plays a central role in
seemingly distant memory functions (e. g. spatial and
episodic memory) for which a coherent explanation has
not yet been found. Some of the puzzling issues are 1,
the relation between spatial and other forms of memories;
2, the role of the feedback loops in decoding-encoding;
and 3, the nature of representations formed first in the
HF then encoded into the neocortex (what and how).

Figure 1: (a) The connectionist architecture can identify a
hidden ARMA(p,q) dynamical system driven by indepen-
dent sources. The overall structure is a consequence of
the suggested algorithm and the constraint of Hebbian (lo-
cal) interactions. (b) Gross anatomy of HF. Dashed lined
denote connections tuned in a supervised manner. Arrow-
head lines denote mostly excitatory, circle head denotes in-
hibitory connections.
We have recently suggested [1] that the core function of

HF is system identification: it is tuned to expose the hid-
den (and presumably) low dimensional dynamical system
behind the observations. The emerging internal model can
be used to predict and correct subsequent (noisy or partial)
observations thus decreasing the computational load. In
particular, the overall goal is to learn causal relationships in
which independent driving sources can trigger events de-
fined as change in the state. For hidden ARMA(p,q) mod-
els driven by independent sources, it can be proved [2] that
model parameters (of the underlying dynamical system and
the observation matrix) as well as the hidden sources can
be recovered (up to some ambiguity). The following com-
putational steps are needed: 1, estimating innovation , 2
whitening (decorrelation and normalization), source sep-
aration (e.g. by Independent Component Analysis, [3]) and
supervised learning to form the internal model. Imposing
locality on the computations (Hebbian constraint) resulted
in a connectionist architecture (Fig 1.a) bearing strong sim-
ilarities with the gross anatomy of HF Fig. 1.b.
When the generic model was applied on signals with implicit
spatial information (random mixture of position dependent
Gaussian blobs), it manifested grid- and place cell like spa-
tial activity distribution in modules corresponding to the en-
torhinal layers and CA1, respectively. For mixtures of purely
position and purely direction dependent inputs the model
discovered the two independent subspaces of position and
direction. For conjunctive inputs, separation discretized
the 3D space of space and direction and ICA on novelty
decreased the direction dependence (results not shown).

2. Grid continuation by prediction

Regarding spatial memories, grid cells ([4]) of the EC are
supposed to provide a metric required for reliable spatial
navigation (e.g. in path integration, see [5]). However, 1,
they can be transiently distorted by smooth changes in the
environment [6] 2, metric can be based on other represen-
tations [7] and 3, navigation may not always require HF
[8]. In addition, the generating mechanism is not known,
there are several competing theories (e.g. attractor dynam-
ics models, assuming strong recurrent connections [5] and

oscillatory models [9, 10]). The core model is based on
statistical learning, behavioral aspects are not yet included.
Grid continuation (maintaining grid representation while not
all modalities can be accessed), for example, cannot be ex-
plained by pure statistics. The transient distortion of grids
may imply that it cannot purely be generated by internal
(sensory independent) mechanism. Instead, we suggest
that a grid basis can be learnt based on the sensory statis-
tics and then an internal model of the dynamics of the grid
activity patterns is updated by sensory and motor signals.
In this way -depending on the context- different modalities
can be taken into account according to the extent the sys-
tem trusts in their reliability (probabilistic switching). In ac-
cord with [11] we emphasize that integration should be re-
alized by a “substitution” mechanism, in which modalities
can replace each other in updating the internal model.

Figure 2: Update of the internal model. The model’s own
prediction, sensory modalities and the motor signals con-
tribute to the appropriate update according to their time-
dependent reliability.

Figure 3: Prediction of grid activity based on previous ac-
tivity of units with similar direction preference. (a) the car-
toon displays the training (dark, solid arrow) and the test-
ing (dashed arrow) directions, while the thick notched arrow
shows the preferred direction of the grid unit whose spatial
activity pattern is denoted by the hexagon. During train-
ing only random, consecutive point pairs were used (as an
AR(1) process is assumed), but during testing, the system
had to predict the activity along the whole trajectory. (b)
Average prediction error as a number of grid cells in the
set. (c) Prediction error vs angle difference between train-
ing and testing tracks. (N=30). (d) Prediction error vs angle
difference between the preferred and the training(testing)
directions. (N=100)

In most models on sensory motor maps or multimodal sen-
sory fusion, this integration is thought to be realized by
multiplicative gain field control mechanisms [12]. How-
ever, if neither of the modalities can be full trusted, these
mechanisms may fail. We suggest instead a common low-
dimensional representation onto which all modalities can
be simultaneously projected to update the state of the in-
ternal dynamical system (Fig 2). In this formalism the out-
come of the internal model can also be seen as a “sen-
sory” modality: x̄+ = f{α1[Fx + θ(|x̂|)F1(x̂ − x)] + α2[Fx +
θ(|x̃|)F2(x̃ − x)] + . . .}. θ() denotes Heaviside step function
to switch on and off the different terms of the r.h.s accord-
ing to the presence of their argument. If no modalities can
be accessed then the best guess is the prediction of the
internal model (x̄+ = f{Fx}). The reliability of the terms
are introduced through the values of αi (

∑
i αi = 1). Dif-

ferences between the modalities and the internal model’s
predictions are transmitted by matrices Fi (the simplest sce-
nario, Fx ≈

∑
i αiF

ix) and f () is a nonlinear transformation
to keep x bounded. As a first step toward the design of
this controlled dynamical system with probabilistic switch-
ing, first we need to show if periodic grid activity can be

learnt to extrapolate in time. In the simulations we used
artificially generated (perfectly ordered) grids (multi-peaked
spatial distribution with peaks on a regular hexagrid) and
sampled the activity along parallel tracks covering the re-
ceptive field. A further simplification was that grid activ-
ity was approximated by a well defined group of grid cells
(10-100 units of similar direction selectivity) with the same
orientation and spacing but differing offsets. At last, Heb-
bian learning is not yet imposed on the system, we simply
wanted to see, if the task can be solved at all within the
proposed framework. We implemented a Support Vector
Machine algorithm for regression ( SVR) [13] as one of the
most efficient (in terms of training time and robustness to
perturbations or noise) algorithm for predicting time series.
During training subsequent activity patterns (sample pairs
along trajectory) were used. During testing the system was
driven by its own output (n step look ahead prediction). Er-
ror is then defined as the 2-norm (spectral norm) of the dif-
ference between the real and the predicted population ac-
tivities normalized by the number of grid units and averaged
over 10 parallel runs. Fig 3 shows how the error depend on
a, the number of units in the group b, the angle difference
between training (same as the preferred direction) and test-
ing tracks and c, the angle difference between the preferred
and the training direction (same as the testing direction).
The results show that a modest number of units is enough
to predict the output of one unit and activity can indeed be
predicted in the 2D space.

3. Work in progress

Treating modalities as control over the internal representa-
tion may lead to a better understanding of vestibular and
motor feedback onto the HF. The rich recurrent collateral
system of CA3 has not yet included in the model, but it is
also assumed to effect grid formation. At last, it would be
important to explain the role of grid representation in en-
coding long term memories in the neocortex.
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