Psychological State Estimation
During Robot Assisted Gait Training

A. Koenig1,2, X. Omlin1, M. Bolliger1,2, L. Zimmerli3, C. Krewer, 4 M. Sapa4, F. Müller4 and R. Riener1,2

Objective

\textbf{Idea}: Real-time estimate of the psycho-physiological state from physiological measurements during robot assisted gait training in neurological patients and healthy subjects.

\textbf{Psycho-physiology}: all social, behavioural and cognitive interactions cause changes in physiological signals. An objective quantification of the psychological state becomes possible.

\textbf{Discussion}

Real-time estimation of the psychological state of patients during Lokomat training was possible using physiological recordings as objective measures. In the future, we will strive for closed loop control of the psychological state to increase rehabilitation success.

\textbf{Background}

\textbf{Rehabilitation}: the psychological state, i.e. the voluntary desire to active participation in the rehabilitation training, has crucial influence on success or failure of the rehabilitation.

\textbf{Psycho-physiology}: all social, behavioural and cognitive interactions cause changes in physiological signals. An objective quantification of the psychological state becomes possible.

\textbf{Classification Results}

The four different psychological states are clearly distinguishable from recordings of breathing, ECG, skin temperature and galvanic skin response (GSR) alone.

\textbf{Methods}

Physiological measurements of heart rate, heart rate variability, skin conductance, skin temperature and breathing frequency of 17 healthy subjects and 10 neurological patients.

Virtual reality task with adjustable difficulty level to provoke different psychological states (Fig. 4) by making the task boring, unsolvable or challenging.

State classification using a neural network using 30 hidden neurons.

\textbf{Acknowledgements}

This work was supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 215756.

1 Sensory-Motor Systems Lab
2 Spinal Cord Injury Center
3 Hocoma Inc.
4 Neurologische Klinik Bad Aibling

1 Sensory-Motor Systems Lab
Inst. for Robotics & Intelligent Systems
Dept. of Mechanical & Process Eng.
ETH Zurich
http://www.sms.mavt.ethz.ch

2 Spinal Cord Injury Center
University Hospital Balgrist
Faculty of Medicine
University of Zurich
http://www.balgrist.ch

3 Hocoma Inc.
Industriestrasse 4
CH-8604 Volketswil
www.hocoma.ch

4 Neurologische Klinik Bad Aibling
Kolbemoorer Str. 72
D-83043 Bad Aibling
www.schoen-kliniken.de