
Position Control of a Quadrotor
with Visual Inputs

Introduction
We aim to build an autonomous quadrotor that is capable of

doing navigation in an indoor environment with camera as the

sole sensor. The first step towards this goal is to develop a

position controller that drives the quadrotor from one point of

Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys

Figure 4. Free body
diagram of the quadrotor

System Description

position controller that drives the quadrotor from one point of

the environment to another. In this poster, we describe our

development of the position controller with visual inputs.

The quadrotor is provided by one of our collaborators - the

Ascending Technologies [1] (Figure 1). To fulfill our objective of

visual guidance, we added a “downward looking” PointGrey

diagram of the quadrotor

Our first attempt for position control is the PID controller (Figure

5). The input to the controller is the error computed from the

(1)

 

 

  g
m

T
a

m

T
a

m

T
a

z

y

x













coscos

sincoscossinsin

sinsincoscossin

g , g y

Firefly camera [2] and an Overo Gumstix [3] (Figure 2). The

Overo Gumstix, which runs on OpenEmbedded Linux, grabs

visual inputs from the Camera and sends control inputs to the

Autopilot unit of the quadrotor. Together, these form the visual

control loop in our quadrotor platform.

5). The input to the controller is the error computed from the

difference of the current camera and the desired poses.

Simulation and implementation however showed that the PID

controller is not capable of handling more than 100ms of

transport delay in the visual sensor, which is typical in our

implementation, hence causing large overshoots in the

response as shown in Figure 6.

Gumstix

Camera

Figure 1. Quadrotor from
Ascending Technologies

Figure 2. Gumstix
and camera setup

Figure 6. Large overshoot
for PID controller with large
transport delay

Figure 5: PID position controller
Ascending Technologies and camera setup

Visual Feedback
The pose of the quadrotor must be known at all times for it to

traverse safely in the environment. The ARToolkitPlus (ARTK)

software [4], which is originally developed for augmented reality,

is used for pose computation in our work. The software

searches through each video frame for unique ARTK markers

Finally, we designed and implemented a state controller with a

state estimator as shown in Figure 7. The state estimator is

used to reconstruct the entire state so that the undelayed state

is available for control. A reference gain N and integrator gain Ki

is included to eliminate steady state errors. The feedback gain

K, estimator gain L and integrator gain Ki are found from

standard LQR/LQG design procedure [5]. Figure 8 shows the

transport delay

searches through each video frame for unique ARTK markers

(Figure 3) that were placed in the environment, and computes

the camera pose with respect to them. The ARTK is running in

OpenEmbedded Linux on the Gumstix at 10-20Hz.

simulated response of the controller with small overshoot.

Figure 3. Example of an
ARToolKitPlus marker

Conclusion

R f

Position Controller: PID vs LQR/LQG
The quadrotor is assumed to behave like a point-mass which is

In this poster, we showed our system design for position control

of a quadrotor using visual inputs in indoor environment and

compared the performances of PID and LQR/LQG controllers.

Figure 8. Response from
LQR/LQG controller with
large transport delay

Figure 7: LQR/LQG position controller

[1] http://www.asctec.de/main/index.php.
[2] http://www.ptgrey.com/products/fireflymv/index.asp
[3] http://www.gumstix.com/
[4] http://studierstube.icg .tugraz.ac.at/handheld_ar/artoolkitpls.php
[5] “Digital control of dynamic systems”, 3rd edition, Addison-Wesley, G. F.

Franklin, J. D. Powell, and M. Workman.

ReferencesThe quadrotor is assumed to behave like a point mass which is

influenced by 2 forces – the resultant thrust T from the rotors

and its weight mg (Figure 4). Equation (1) gives the relation of

the linear accelerations (ax, ay, az) and the attitudes (θ, φ, Φ).

Three independent controllers could be implemented for each

axis since the accelerations are not dependent on each other.

