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Summary \ Robustness against noise and clutter

We present a novel set of shape-centered interest points. The interest Our novel shape-centered interest points (SCIPs) are formed by
points are formed at locations of high local symmetry. Our symmetry de- | shape boundaries and, therefore, are not affected by the back-
tection is based on Gradient Vector Flow (GVF) [1] fields which provide a ground clutter. Since our features are obtained by a PDE diffu-
high level of stability against noise. The shape centered interest points sion approach they are robust against noise.

allow for a robust scale and orientation estimation. We have shown their
usefulness for image encoding and superpixel segmentation and demon-
strat that they carry information that is to a certain degree complemen-
tary to corner based interest points.
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Figure 4: Shape-centered (blue) and corner (red) interest point repeatability in noise and clutter
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Figure 1: Feature extraction pipeline including scale and orientation estimation [3]

Our novel shape transform also offers the opportunity to ini-

tialize a segmentation process [3]. We use the thresholded flux
\ flow field to generate well-structured seeds for a watershed
method. We employ the noise-suppressed and edge-enhanced
flux flow field as a height map for the watershed method.

Medial features

We have derived a new set of shape-centered features [2] based
on GVF fields [1]. The GVF is the result of optimizing the follow-
ing functional with respect to the vector field V(x,y):
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e The number and structure of the the resultuing superpixels can
data term smoothing term be controlled by the threshold parameter ©. We showed that
Our proposed shape transform computes the flux flow of the our superpixel algorithm performs closer to human-generated
normalized flow field using a ring integral on the normalized so- | segmentations than state-of-the-art algorithms.
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The resulting medial features form at singularities of the GVF ESI::;sEi;\/dalbetal. §:§
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field and owe their stability against noise to the above optimiza-
tion and are not affected by ‘background clutter’.

Figure 6: Superpixel Segmentation: Performance measure, results and reconstruction examples [3]

/Combination of shape-centered and cor-
ner-based interest points
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Corner-based and shape-centered interest points encode com-
plementary information. Edge map reconstruction from code-
books of visual words extracted at medial and corner interest

points outperforms reconstruction based on just one type of
codebook.

Scale and orientation
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At local flux flow extrema we do a
scale search with a growing disc. We
define a stop criterion by integrating
shape boundaries while taking the GVF
orientation into account. We find the
major orientation at the local scale by
taking the direction of the first princi-
pal component of the thresholded flux
flow field. This robust rotation and
scale estimation procedure provides
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Figure 7: Edge map reconstruction pipeline and performance for different codebook sizes and mixtures [2]
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