
Software architecture and middleware

for artificial cognitive systems

Johan Wiklund, Klas Nordberg, Michael Felsberg

Computer Vision Laboratory, Linköping University, Sweden.

Middleware for system integration
The system integration task need tools to glue together the different parts of

the DIPLECS system. After a review of available middleware, ICE was selected

as the preferred solution for the DIPLECS system integration. ICE (Internet

Communication Engine) is a mature middleware which provide tools for inter-

process communication and synchronization.

A couple of companies that are using Ice:

� Skype uses Ice as part of its communications infrastructure.

� Baosteel uses Ice as a part of the communications infrastructure for its real-

time process control system.

See the homepage of ZeroC for more information: http://www.zeroc.com/

The DIPLECS project
The DIPLECS (Dynamic Interactive Perception-action LEarning in Cognitive

Systems) project aims to design an Artificial Cognitive System capable of

learning and adapting to respond in the everyday situations humans take for

granted. The primary demonstration of its capability will be providing

assistance and advice to the driver of a car. The system will learn by watching

humans, how they act and react while driving, building models of their

behaviour and predicting what a driver would do when presented with a

specific driving scenario. The end goal of which is to provide a flexible

cognitive system architecture demonstrated within the domain of a driver

assistance system, thus potentially increasing future road safety.

For more information about the DIPLECS project, see http://www.diplecs.eu/

System parts
Available functionalities (instrumented vehicle, ADR data recorder/player)

provided by Autoliv is based on .NET code, and the integration was done using

the .NET mappings in the ICE middle-ware. The ADR client connects to the

ADR data stream and stores the ADR data in ring buffers. The data consists of

five different channels, which may have different data rates. Each channel is

routed to a separate ring buffer. Every data item is tagged with a timestamp

which follows the data through the following processing stages.

The detector, tracker, fusion and mining module implementations are each

located in a separate thread. Each thread reads input data from one (or

several) data buffers, and put the resulting data in a output buffer. The

threads also have public methods to set different parameters.

The consistency analysis is based on the Prolog logic programming language.

Python mappings in the ICE middleware have been used to build the

connections between the fusion thread (which is C++ based) and the

consistency analysis module. The Python language is used to synchronize and

send/receive data between the Prolog based consistency analysis module and

the C++ based data-buffers.

See the homepage of ZeroC for more information: http://www.zeroc.com/

ICE provides a simple thread abstraction that makes it

possible to write portable source code regardless of the

native threading platform. This shields the application

from the native underlying thread APIs and guarantees

uniform semantics regardless of the deployment

platform. The implemented threads in the DIPLECS

system uses the ICE thread abstraction to simplify the

integration.

Communication and synchronization between the

threads is implemented by using monitor-protected ring

buffers. These buffers is implemented as a template

class, using functionalities in the ICE middle-ware. The

template class contains the access methods for

synchronized reading and writing of buffer data. The

actual data content is defined when a buffer is

instantiated. The template buffer class is used for all

buffer instances in the integrated system.

Interactive system monitoring
The ICE python language binding is also used to create an interactive

command interface to the different modules. Using dynamic code generation,

Slice (Specification Language for Ice) files are "loaded“ at run time and

dynamically translated into Python code, which is immediately compiled and

available for use by the application. Dynamic code generation is convenient

for a number of reasons, it avoids the intermediate compilation step required

by static code generation. It also reduces complexity, which is especially

helpful during testing, or when writing short or transient programs.

These features makes it an ideal tool during development/debugging. It is

straightforward to view data buffer content, call available methods on the

implemented modules, such as start/stop the different threads, read data

from the ring buffers, setting thread parameters, etc. It is also very useful for

visualization of the different processing stages, for example displaying the

input image frames, with overlayed tracking results.

Acknowledgement
The DIPLECS project has received funding from the

European Community's Seventh Framework Programme

(FP7/2007-2013) under grant agreement no 215078.

Conclusion
Our experience using ICE is very positive, it has really simplified the coding

effort of the system integration. Specifically, we have made heavy use of the

following features of ICE:

� Machine independence: It is easy to start system parts on different

computers.

� Language independence: the system implementation includes .NET, C++,

Python, Matlab and Prolog code.

� Operating system independence: Some system parts are only available on

Windows, some parts are only available on Linux.

� Threading support: the implementation is multi-threaded.

� Synchronization support: synchronization between the threads is

implemented using monitor-protected ring buffers.

