HOMEOSTATIC PLASTICITY IN ROBOTS

FROM DEVELOPMENT TO OPERANT CONDITIONING TO HABIT FORMATION

Abstract

We present an evolutionary robotics model of an agent
controlled by a homeostatically plastic neural network where
the connectivity is modified by a pre-synaptic Hebbian rule
when the firing rate of neurons goes out of pre-specified
bounds. The very same underlying architecture supports a
developmental process, an operant conditioning task and the

spontaneous formation of sensorimotor habits (never selected

during the evolutionary phase). The task consists on
distinguishing two different colored food sources with
changing profitability (food source types alternate in random
intervals from “profitable” to “poisonous”). The agent has two

arrays of sensors (one for each color) and an additional
sensor to evaluate the profitability of the food-source. The
control architecture is a fully connected Continuous Time

Recurrent Neural Network with presynaptic Hebbian rule that

is activated if the activity of pre or post-synaptic neuron is

either to high or to low. Learning rule parameters are evolved

to optimize the operant conditioning task with an additional
fitness reward for internal stability. The agents are initialized
with synaptic connections set to zero, a phase of

development is observed after which the synaptic architecture

is stabilized and the robot performs adequately on the

operant conditioning task (distinguishing between profitable
and toxic food). In addition, the robot can develop new

habits in circumstances that were never encountered during
evolution: e.g. the presentation of the same colored food

source at the right produces a preference for turning to the
right or alternating preference to different colors.
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The Task

The agent has to select between two (differently colored) falling food
sources. Each food color has an associated energy profitability that
the agent can sense (poisonous -10 energy, profitable +10 energy).

The agent has to learn this association that changes during its lifetime

(typically every 8 food presentations)
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between homeostatic bounds. The agent is also penalized if it doesn't choose any food.
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Results 2: spontaneous habit formation

When both food sources are profitable the agent develops a “preference”

to choose the food on its right (that this behaviour is not an innate
preference can be shown on early trials not biased systematically
towards the right)
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Under different conditions, when no optimality criteria applies in terms of profitability, the history of

interactions leads to the formation of particular preferences or habits on the agent, the exact nature of such
patterns and their robustness needs to be tested and explored in more detail. Our working hypothesis is that

recurrent interactions stabilize a neural configuration that sustains the interactions that generated it.
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