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The Task
The agent has to select between two (differently colored) falling food 
sources. Each food color has an associated energy profitability that 
the agent can sense (poisonous -10 energy, profitable +10 energy). 

The agent has to learn this association that changes during its lifetime 
(typically every 8 food presentations)

Results 1: development and operant conditioning 
Homeostatic plasticity generates and stabilizes a network configuration during 

development (left), this configuration is capable to sustain operant 
conditioning (right)

Change of profitability: 
yellow becomes 
poisonous, blue profitable

Abstract
We present an evolutionary robotics model of an agent 
controlled by a homeostatically plastic neural network where 
the connectivity is modified by a pre-synaptic Hebbian rule 
when the firing rate of neurons goes out of pre-specified 
bounds. The very same underlying architecture supports a 
developmental process, an operant conditioning task and the 
spontaneous formation of sensorimotor habits (never selected 
during the evolutionary phase). The task consists on 
distinguishing two different colored food sources with 
changing profitability (food source types alternate in random 
intervals from “profitable” to “poisonous”). The agent has two 
arrays of sensors (one for each color) and an additional 
sensor to evaluate the profitability of the food-source. The 
control architecture is a fully connected Continuous Time 
Recurrent Neural Network with presynaptic Hebbian rule that 
is activated if the activity of pre or post-synaptic neuron is 
either to high or to low. Learning rule parameters are evolved 
to optimize the operant conditioning task with an additional 
fitness reward for internal stability. The agents are initialized 
with synaptic connections set to zero, a phase of 
development is observed after which the synaptic architecture 
is stabilized and the robot performs adequately on the 
operant conditioning task (distinguishing between profitable 
and toxic food). In addition, the robot can develop new 
habits in circumstances that were never encountered during 
evolution: e.g. the presentation of the same colored food 
source at the right produces a preference for turning to the 
right or alternating preference to different colors.

The Agent

CONTROLLER: Continuous Time 
Reucrrent and Totally Connected 
Neural Network with Homeostatic 
Plasticity
SENSORS: One energy sensor and 6 
laser-like visual sensor for each color.

Artificial Evolution
Incremental Evolution, different 

phases

Phase 2 Phase 3 Phase 4

A Genetic Algorithm is used to evolve 
the learning rule parameters for the 
agent. A population of 30 individuals, 
with mutation rate of 0.05, standard 
deviation of 0.02, elitism of 2 and 
crossover. 

Incremental evolution is used with 
4 different phases with increasing 
number of food presentations and 
changes of profitability (see fig. Right)

Results 2: spontaneous habit formation
When both food sources are profitable the agent develops a “preference” 

to choose the food on its right (that this behaviour is not an innate 
preference can be shown on early trials not biased systematically 

towards the right)
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Developmental stage: all food 
profitable, no fitness consequences

Operant Conditioning

Neuronal Activation Equation

Developmental stage

Hebbian Presynaptic Rule and 
Homeostatic Plasticity Rule
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Characteristic Behaviour

… 40 food 
presentations 
after...

Development and Plasticity
The Agent is presented with two 
food choices (yellow and blue), 
profitability of food sources (-10 
or 10 energy units) changes 
every 6-10 presentations. The 
agent is capable of learning 
which food is beneficial and acts 
accordingly. The diagram on the 
right shows a characteristic chart 
of the agent's options during a 50 
food presentation trial. The 
agent's behaviour is shown 
bellow. Statistical average over 
20 samples of 50 trials each for 
food profitability change every 
10, 8 and 6 presentations is 
shown on the bottom-right side.

Fitness function: directly proportional to the energy accumulated by the agent during 
trials, synaptic plasticity consumes energy thus selecting for stability of neural dynamics 
between homeostatic bounds. The agent is also penalized if it doesn't choose any food.

Average Choices over Trials
Average good and bad choices for food profitability 

changing every 10, 8 and 6 food presentations. Average 
of 20 samples of 40 food presentations each (+10 of 

development not counted)
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Under different conditions, when no optimality criteria applies in terms of profitability, the history of 
interactions leads to the formation of particular preferences or habits on the agent, the exact nature of such 
patterns and their robustness needs to be tested and explored in more detail. Our working hypothesis is that 
recurrent interactions stabilize a neural configuration that sustains the interactions that generated it.

Copyleft 2010 X. Barandiaran & E. Di Paolo. 
This poster is under a CreativeCommons By-SA 
license. You are free to use, copy, modify and 

distribute it provided that this notice is preserved.

8 6


	Slide 1

