Agent - Space Architecture

Andrej Luény

Department of Applied Informatics, Faculty of Mathematics, Physics and informatics,
Comenius University, Bratislava

andy@microstep-mis.com, www.agentspace.org, www.microstep-mis.com/~andy

Introduction How the agents communicate Data flows many:many Real-time operation

Agent-Space architecture is a software
tool for building control systems of
robots or virtual models which
modularity is based on decentralization
and massive parallelism. It follows
Minsky's Society of Mind and Brooks'
subsumption architecture, mainly idea
how higher-level modules can regulate
activity in the system by influence of
mutual communication among lower-
level modules. Unlike its points of
origin, the architecture overcomes
limitations of hardware-layout fashion
due to concept of indirect
communication among agents similar
to Gelernter's LINDA space. Moreover
it concerns real-time operation as
crucial and supports it by several
original mechanisms. In this way it
properly puts together fast and slow
processes and enables very
complicated data flows among them.

Control as a set of agents

Agent-Space architecture approaches
any control as a set of agents where the
proper behavior of the whole system is
achieved by proper activities of
individual agents at the proper instants
of time (Fig. 1). The overall behavior of
the system is dedicated to emerge from
mutual interaction among the agents.

Figure 1.

How the agent works

Each agent has own control and
performs own code, running in endless
cycle (Fig. 2). Each course through the
loop is dedicated for computing of
appropriate actions upon perception of
the current situation and internal state.
Unlike neural networks, here it is
possible to specify how each agent
contributes to the overall behavior.

agent
(representation)

agent

Figure 2.

The major part of agent perception and
action resides in mutual data exchange
among agents. The rest is tied with
sensors and actuators.

Agents are put together into a system by
mutual indirect communication which is
provided by an advanced blackboard
called space (Fig. 3). Space can contain
named data of various forms (called
blocks) and agents are able to read,
write or delete them. Agents have to
know name and form of blocks they
manipulate. In special case, it is enough
to know a mask to manipulate more
blocks which names are matching the

mask.
block in space

write V/read

agent agent
(representation)

Figure 3. agent

agent

Implicit sampling

Several details are important to enable
modeling with the architecture as easy
as possible. Mainly there is no special
operation for creation of a block in space
- blocks are physically created by the
first write operation. However, they can
be read even before this moment,
throwing no exception in the system: for
such case agents ought to define a
default value for each read operation
which is returned as a result if the read
block has contained no value yet. Blocks
can contain only one value; thus the
value written by one write operation is
overwritten by the next write operation.
The value is overwritten regardless an
agent has read the value or not. Thus
when a producer writes a next value,
before the former value is read by a
consumer, the former value is simply
lost. Thus the values are implicitly
sampled (Fig. 4). Due to the sampling it
is not possible to overwhelm the system.
It is also easy to combine slow and fast
modules.
fast agent

10,11,12,13,14 ' \ a(10), a(11), a(12), a(13), a(14)

* b(10, b(12), b(14)

slow agent

Figure 4.

Besides the manipulation by agents,
space provides to blocks two additional
features: their time validity and priority.

Time validity

Time validity can be defined when agent
calls write operation. At the moment, it
can specify the period after which the
written value automatically expires.
Otherwise the value is valid until it is
rewritten. Time validity is a good
mechanism for expression of tentative
character of information.

Unlike traditional wiring of one output to
several inputs (1:many), we enable to
establish data flows from many
producers to many consumers (Fig. 5).

block in space

producers //////W\\\\\\\CO"S"I"EFS
o0 00D
Figure 5.

Making this relation clear, let us imagine
that you have several producers of the
same value. However, each of them
produces the value under certain (and
different) conditions only. In this situation
we recommend to let all the producers to
write their proposals for the value to the
same block. Thus consumers do not
need to reflect to the fact that we have
more producers, they simply undertake
the value stored in the common block.
Just when conditions disable a producer
to compute the value, producer must not
write a value “unknown” to the block as it
could overwrite useful value computed
by another producer. As a result, the
block value is not changing when
conditions are so unfavorable that no
producer can propose the value. After a
period, consumer could undertake too
old value. This problem can be solved
easily just by use of time validity.

Priorities enable us to prefer value
provided by a particular producer. E.g.
such producer could produce more
accurate value than others. Priority can
be defined when agent writes the value
to space; default priority is concerned
otherwise. When other agents try to
overwrite the value by another one, the
overwritting is physically performed only
if the priority of the new value is not
lower then priority of the former value.

It is necessary to underline that agent
whose write operation is ignored gets no
information about the fact. This is
important to enable higher levels of the
system to influence operation of lower
levels (Fig. 6) without invocation of an
exception which could stop operation of
the whole system.

Q higher agent
read 2

write(priority+1)

RA

write(priority)

higher level

lower level

lower
agent

Figure 6.

Simultaneous write operations and
priorities enables us to implement idea
that higher levels of control rather
regulate than activate lower levels: an
agent in the higher level can read some
blocks in lower level and - at a proper
moment - it can overwrite them.

Real time operation is partially reflected
by the fact that in real implementation
the course through agent loop
consumes certain time which differs
from agent to agent. However the major
real-time feature is blocking. It means
that agent usually sleeps and performs
one course through its loop just when a
notification is received. The notification
is based on two different mechanisms.
The primary mechanism is notification
by timer (Fig. 7, on the left), which can
be set up during agent initialization to
provide regular notification with a given
time period. As a result, propagation of
events can be delayed little bit by any
participating agent. Such system can
tentatively exhibit inconsistent relations
among propagating values, but mostly
tends to achieve a consistent state.

timer

ring

1riggc
plocks

Figure 7.

The secondary mechanism is
notification by trigger (Fig. 7, on the
right). Trigger is a notification provided
by space when a particular block (or
one block from a given group of blocks)
is changed. Thus immediate reaction on
a stimulus is also possible.

Conclusion

Due to its character Agent-Space
architecture enables to establish
decentralized control structures with
simple layout of modules and
complicated data exchange among
them without danger of livelock or
deadlock. We tested the architecture on
several robots and virtual models.

An Example

Robot following ping-pong ball under
various conditions (various lighting,
more balls, occlusion of the ball) (Fig. 8)

camera balls selected ball motors
image v direction f
recognizers follower left/right

recognizer in
dark

V followed ball
interpolator .
CZS Figure 8.

motor control

